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Abstract

The graph theory derived model for the bonding topology in the globally

delocalized polyhedral boranes B6 H6
2- and B1 2 H1 2

2 - Is evaluated by comparison

of the energies of the core molecular orbitals with those obtained by the 1962

LCAO-MO extended Huckel calculations of Hoffmann and Lipscomb. Of particular

interest Is how well the complete graphs K6 and K12 used in the graph theory

derived model approximate the bonding topologies of the unique internal orbitals

(radial orbitals) of the octahedron and icosahedron, respectively. In the case

of the B6 H6
2- octahedron the single positive elgenvalue of the K6 graph

corresponds to the results from the extended HAckel calculations. In addition,

the parameters from the latter calculations indicate a ratio of 0.625 for the

overlap of the unique internal orbitals of the trans atom pairs relative to ii

atom pairs as compared with unity implied by an unweighted K6 graph. In the

case of the B1 2 H1 22- icosahedron the graph theory derived model is far less

satisfactory since the single positive eigenvalue of the K 12 graph disagrees with

the four bonding core molecular orbitals (an Alg and three triply degenerate

Tlu molecular orbitals) found by the extended Huckel calculations after removing

the effect of the mixing of core and surface bonding orbitals corresponding to

the same Irreducible representations. However, this core-surface orbital mixing

raises the energy of the triply degenerate T1 u core molecular orbitals to

antibonding levels so that the graph theory derived model fortultiously gives

correct skeletal electron counts for the regular icosahedron despite this

fundamental error.

m
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1. INTRODUCTION

Several years ago we developed a graph-theoretical approach for the study

of the bonding topology in polyhedral boranes, carboranes, and metal clusters. 2, 3

Subsequent work has shown this approach to be very effective in relating electron

count to cluster shape for diverse metal clusters using a minimum of computation.

Metal clusters treated effectively by this approach include post-transition element

clusters,4  osmium carbonyl clusters, gold clusters,6 ,7 platinum carbonyl

clusters, 6 ,8 and rhodium carbonyl clusters having fused polyhedra. 9, 1 0

This graph-theory derived method uses Ideas originating from HAckel theory. 1 1, 12

However, In order to eliminate the need for computation for determination of

the signs of the energy levels, additional assumptions are Introduced in order

to facilitate the estimation of energies at least to the correct signs. This paper

examines in greater detail some of these additional assumptions using energy

levels obtained by extended Hckel calculations as a basis for comparison. Since

this comparison Is facilitated by selecting systems having maximum symmetry

and a minimum number of external orbitals to mix with the polyhedral core and

surface bonding orbitals, the original Hoffmann-Lipscomb LCAO-MO extended

Huckel calculations on the polyhedral borane anions BnHn 2 are used 1 3 selecting

their results for the "3N problem" of the regular polyhedral B6 H6 2- and B12H 122-.

2. BACKGROUND

The topology of chemical bonding can be represented by a graph in which

the vertices correspond to atoms or orbitals participating In the bonding and

the edges correspond to bonding relationships. The adjacency matrix A of a

graph, such as a graph representing chemical bonding, can be defined as follows:

lg 1!
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0 if i=j

Aij = if i and j are connected by an edge (1)

0 if I and j are not connected by an edge

The eigenvalues of the adjacency matrix are obtained from the following

determinantal equation:

IA-x = 0 (2)

where I is the unit matrix (111 = 1 and lij = 0 for i J I).

The eigenvalues of the adjacency matrix of the graph representing the relevant

chemical bonding topology as determined by equation 2 are closely related to

the energy levels as determined by HUckel theory.1 1, 14,15,16 Thus HU"Ckel theory

uses the secular equation

SI-ESI =0 (3)

in which the energy matrix H and overlap matrix S can be resolved into the unit

matrix I and the adjacency matrix A as follows:

H = i1+ S3A (4a)

S = I + SA (4b)

The energy levels of the system are related to the eigenvalues of the adjacency

matrix A (equation 2) as follows:
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E(5 I +xS

Thus a positive eigenvalue x of A corresponds to a bonding orbital and a negative

eigenvalue x corresponds to an antibonding orbtial in the corresponding chemical

system. Furthermore, in Hukckel theory S is taken to be zero and Q is used as

the zero of energy (i.e., set to zero). In this case

E = x8 (6)

and the energy levels are directly proportional to the eigenvalues of the adjacency

matrix.

The polyhedral boranes discussed in this paper exhibit globally delocalized

bonding. 2, 3 A vertex boron atom in such systems uses three of its four valence

orbitals for intrapolyhedral bonding leaving one valence orbital as an external

orbital to bond to the external group, typically a monovalent group such as

hydrogen or halogen. One of the major triumphs of the graph-theory derived

approach to the bonding topology in globally delocalized systems is the

demonstration of the close analogy between the bonding in two-dimensional planar

aromatic systems such as benzene and that In three-dimensional deltahedral

boranes and carboranes. 2 In this context a deltahedron is defined as a polyhedron

in which all faces are triangles. Thus consider a globally delocalized polygonal

or deltahedral system having n vertices. In such a system the three internal

orbitals on each vertex atom are divided into two twin Internal orbitals (called

"tangential" in some treatments1 7 ) and a unique internal orbital (called "radial"

in some treatments1 7 ). Pairwise overlap between the 2n twin internal orbitals

is responsible for the formation of the polygonal or deltahedral framework and

leads to the splitting of these 2n orbitals into n bonding and n antibonding orbitals.
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This bonding topology can be represented by a disconnected graph having 2n

vertices corresponding to the 2n twin internal orbitals and n K2 components

where a K 2 component has two vertices with an edge connecting them. The

dimensionality of this bonding of the twin internal orbitals is one less than the

dimensionality of the globally delocalized system. Thus In the case of the

two-dimensional planar polygonal systems such as benzene, the pairwise overlap

of the 2n twin internal orbitals leads to the a-bonding network which may be

regarded as a collection of n one-dimensional bonds along the perimeter of the

polygon involving adjacent pairs of polygonal vertices. The n bonding and n

antibonding orbitals correspond to the a bonding and a* antibonding orbitals,

respectively. In the case of the three-dimensional deltahedral systems, the

pairwise overlap of the 2n twin internal orbitals results in bonding over the

two-dimensional surface of the deltahedron, which may be regarded as

(topologically) homeomorphic to the sphere.

The equal numbers of bonding and antibonding orbitals formed by pairwise

overlap of the twin internal orbitals are supplemented by additional bonding

and antibonding molecular orbitals formed by global mutual overlap of the n

unique internal orbitals. This bonding topology can be represented by a graph

G in which the vertices correspond to the vertex atoms of the polygon or

deltahedron or (equivalently) their unique internal orbitals and the edges represent

pairs of overlapping unique internal orbitals. The relative energies of the

additional molecular orbitals arising from such overlap of the unique internal

orbitals are determined from the eigenvalues x of the adjacency matrix A of

the graph G (see equations 2, 5, and 6, above). In the case of benzene the graph

G is the C6 graph (hexagon) which has three positive and three negative eigenvalues

corresponding to the three n bonding and three 7 * antibonding orbitals,

respectively. In the case of a globally delocalized deltahedron having n vertices

I< vv
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such as found in the deltahedral boranes BnHn 2- and the carboranes C2Bn-2Hn

(6 < n < 12), the graph G is the complete graph Kn in which each of the vertices

has an edge going to every other vertex leading to a total of n(n-i1/2 edges. This

corresponds to an n-center bond at the center (core) of the deltahedron formed

by overlap of each unique internal orbital with every other unique internal orbital.

The complete graph Kn has one positive eigenvalue, namely n-1, and n-1 negative

eigenvalues, namely -1 each, regardless of the value of n indicating that the

n-center core bond in a globally delocalized deltahedron leads to only one new

bonding molecular orbital. The sum of the n bonding orbitals arising from the

surface bonding of the twin internal orbitals and the single bonding orbital arising

from the n-center core bonding of the unique internal orbitals gives a total of

n+1 bonding orbitals for globally delocalized deltahedra having n vertices. Filling

these n+i bonding orbitals with electron pairs in the usual way gives a total of

2n+2 bonding electrons in accord with the observed number of skeletal electrons

required to form stable globally delocalized deltahedral boranes and carboranes.

The major objective of this paper is to examine how well the complete graph

Kn approximates the core bonding in globally delocalized deltahedral systems.

Thus, consider an octahedral borane such as B6 H6
2- . The corresponding complete

graph K6 has (6)(5)/2 = 15 edges. Among these 15 edges, 12 represent overlap

of the unique internal orbitals located on adjacent vertex atoms of the octahedron,

namely a pair of atoms connected by one of the 12 edges. Such edges represent

.Sh. interactions. The remaining 3 edges of the K6 graph represent overlap of

the unique Internal orbitals situated on one of the three pairs of antipodal vertices

of the octahedron. Such edges represent trans interactions. Use of an unweighted

K6 graph to represent the core bonding topology in an octahedron gives equal

weights -to the r.s and trans interactions despite their obvious geometric
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difference. This problem was already recognized by Schmidtke in 1967 in one

of the early papers pointing out the relationship between graph theory and Huckel

theory. 14 In group theoretical terms the graph theory derived model uses the

symmetric group S6 (i.e., the automorphism group of the complete graph K6 )

rather than its subgroup Oh (i.e., the point group of the octahedron) to represent

the symmetry of the skeletal bonding manifold of octahedral boranes such as

B6 H6 2-, which consists of the 6K 2 surface bonding and the K6 core bonding.

The actual Oh rather than S6 symmetry of these systems will result in partial

or complete removal of the five-fold degeneracy of the core antibonding orbitals

and the six-fold degeneracies of the surface bonding and antibonding orbitals.

A similar situation occurs in icosahedral boranes such as B 12 H1 2 2-. The

corresponding complete graph K12 has (12)(11)/2 = 66 edges. Among these 66

edges, 30 edges represent overlap of the unique internal orbitals located on

adjacent vertex atoms of the icosahedron, namely a pair of atoms connected

by one of the 30 edges and corresponding to the ortho interaction using carborane

nomenclature. An additional 30 edges of K12 represent overlap of the unique

internal orbitals located on non-adjacent, non-antipodal vertex atoms of the

icosahedron, namely the meta interaction. The remaining 6 edges of K 12 represent

overlap of the unique internal orbitals located on the 6 pairs of antipodal vertices

of the icosahedron, namely the l ara interaction. Use of an unweighted K12 graph

to represent the core bonding topology of an icosahedron gives equa, weights

to the ortho, meta. and pam relationships despite their obvious geometric

difference. The graph theory derived model thus uses the symmetric group S12

of order 12! = 479,001,600 rather than the icosahedral group ih of order 120 to

represent the symmetry of the skeletal bonding manifold of icosahedral boranes

such as B12 H12 2-, which consists of the 12K 2 surface bonding and the K 12 core
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bonding.

Reduction of the symmetry from that of the symmetric groups Sn (n = 6 or

12, respectively) to the polyhedral groups Oh and Ih for octahedral and icosahedral

boranes, respectively, not only splits some molecular orbitals of high degeneracies

but also leads to some mixing of the core and surface bonding. Thus in the case

of octahedral boranes under Oh symmetry the core bonding has the representation

Alg + Tlu + Eg and the surface bonding has the representation Tlu + T2g + T2u

+ Tig. The Tlu core and surface bonding molecular orbitals can therefore overlap

leading to corresponding lowering and raising of the energies of the two molecular

orbitals (designated as AE(Tlu)). Therefore, the Tlu orbital energies determined

by computational methods based on Oh symmetry, including the extended HuJckel

method, do not correspond to pure core or surface bonding but also include the

interaction AE(TIu), which represents another variable which needs to be evaluated

before the graph theory derived methods can be compared with various

computations. Thus in an octahedral borane such as B6 H6
2- under Oh symmetry,

only the Alg and Eg molecular orbitals can represent pure core bonding. In

octanedral metal clusters in which external bonding orbitals clearly play a major

role (e.g., Co6 (CO) 14 4- studied by Mingos1 9 ), even the Alg and Eg molecular

orbitals do not represent pure cnre bonding because of interaction with other

orbitals of A 1 g and Eg symmetries arising from the external -bonding.

A similar situation occurs for icosahedral boranes. Under th symmetry their

core bonding has the representation Ag + T1 u + T2u + Hg and their surface bonding

has the representation Tlu + Hg + Gu + Gg + Hu + T1g. The Tlu and Hg core

and surface bonding orbitals mix with energies AE(Tlu) and AE(Hg), respectively,

leaving only Ag and T2u as pure core bonding orbitals.

This paper compares the graph-theory derived and HuJckel theoretical models

for B6 H6 2- and B12 H 1 2
2- by determining which edge weights for the corresponding



Kn graphs retaining the polyhedral symmetries Oh and Ih , respectively, reproduce

the energies for the pure core orbitals (Alg and Eg for B6 H6 2- and Ag and T2u

for B12 H 12
2-) calculated by the extended HUckel method 13  avoiding external

orbitals (i.e., the "3N" set of Hoffmann and Lipscomb 1 3) in order to eliminate

core-external orbital mixing effects. These edge weights are then used to

calculate hypothetical energies for the impure core orbitals (TIu for 86 H6 2-

and Tlu and Hg for B1 2 H1 2 2-) in the absence of mixing (unperurecore energies).

Comparison of these hypothetical energies with the actual energies from the

extended HUckel calculations1 3 allows evaluation of the core-surface mixing

energies (&E(TIu) for B6 H6 2- and &E(Tlu) and AE(Hg) for B1 2 H12
2-). The

assumptions of the simple graph theory derived bonding model can then be

evaluated using the following observations:

(1) The single positive eigenvalue of the complete Kn graphs should correspond

to the completely symmetric (A1 g or Ag) core orbital being the only bonding

orbital. All other core orbitals should have antibonding .unpertur edcore energies

corresponding to the n-I negative Kn eigenvalues.

(2) The weights of the edges in the polyhedrally weighted Kn graphs representing

non-adjacent vertices in the octahedron or icosahedron should be close to the

unit weights taken for the edges in the Kn graphs representing adjacent vertices

in the polyhedron.

The first observation is the important observation affecting applicability of the

graph theory derived methods. Deviations of edge weights from unity are not

serious if they do not create more than one positive eigenvalue for the core

bonding.

3. THE OCTAHEDRON

Consider an octahedrally weighted. K6 complete graph having 12 edges of
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unit weight corresponding to the octahedron edges and the remaining 3 edges

of weight t corresponding to the three octahedron antipodal pairs. The spectrum

of this graph can be determined by symmetry factoring20 using a thr,'i-fold

axis (Figure 1). The symmetric branch (A in Figure 1, top) gives the eiganvalue

4+t corresponding to the Alg molecular orbital as well as one of the -t eigenvalues

of the triply degenerate Tiu molecular orbital. The doubly degenerate E branch

gives the other two -t eigenvalues of the triply degenerate Tiu molecular orbital

as well as the two -2+t eigenvalues of the doubly degenerate Eg molecular orbital.

Note that any positive value of t is sufficient to lead to only one positive

eigenvalue, namely the 4+t eigenvalue of the Aig orbital, and five negative

eigenvalues, namely the -t eigenvalues of the triply degenerate Tju orbitals

and the -2+t eigenvalues of the doubly degenerate Eg orbital. This indicates

that any positive trans interaction in an octahedron gives the same distribution

of bonding (1) and antibonding (5) orbitals as the unweighted K6 graph used in

the graph theory derived model 2 for B6H 6
2 ", C2 B4 H6 , and globally delocalized

octahedral metal clusters. Thus for octahedral boranes and metal clusters the

success of this model is not very dependent upon the value taken for t. Note

also that setting t = 0 gives the spectrum of the octahedron (+4, 0, 0, 0, -2, -2)

whereas setting t = 1 gives the spectrum of the K6 complete graph (+5, -1, -1,

-1, -1, -1).

The octahedron has two 4mr core bonding molecular orbitals, namely Alg

and E in the absence of mixing with external orbitals (see above). The computed

values for the energies of these two orbitals substituted into equation 6 generate

two equations in t and 8; these equations can be solved to determine these

parameters provided that the zero energy level separating bonding and antibonding

orbitals Is known. Table 1 summarizes the results of such calculations using

the energies computed by Hoffmann and Lipscomb 1 3 for the "3N orbitals" of
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B6 H6
2 -. Thus the computed energies for the Alg and Eg core bonding molecular

orbitals generate the following equations In t and 8:

A19: (4tO = 2.969 (7a)

Eg= (-2+t)8 = -0.884 (7b)

Solving these two equations gives t = 0.625 and 1 = 0.642. These values of t

and 1 can then be used to calculate a b thetal jvalue for the Tlu core molecular

orbital in the absence of core-surface interaction using the following equation:

TIu: (-0.625)(0.642) = -0.401 (8)

This compares with an energy of -0.829 found in the Hoffmann-Lipscomb

calculation for the Tlu core orbital thereby indicating the interaction parameter

AE(TIu) to be -0.401 - (-0.829) = 0.428. Applying this correction to the energy

of the Hoffmann--Lipscomb calculation of the Tlu surface orbital gives energies

of 0.595 and 0.493 for the bonding surface orbitals (Tju + T2g) and -0.416 and

-0.671 for the antibonding surface orbitals (T2u + Tig). This distribution of the

energies of the surface bonding orbitals is crudely consistent with the prediction

by the graph theory derived method2 of six bonding and six antibonding surface

orbitals with the same absolute values for the energies arising from the spectra

of six equivalent disconnected K 2 graphs.

Attempts have been made with much less success to apply this method to

more recent computations on octahedral boranes and metal clusters. Armstrong,

Perkins, and Stewart 21 report self-consistent molecular orbital calculations

on highly symmetrical borane cage anions including B6 H6 2-. The zero energy

maw=
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level of their calculation is not defined so thateL as well as 0 and t are unknowns;

thus equation 5 must be used rather than equation 6. This leads to an

underdetermined system with only two equations to determine three unknowns;

solution of this system to obtain meaningful numbers is not feasible.

The best example of a relevant calculation on a globally delocalized octahedral

metal cluster is the Wolfsberg-Helmholtz molecular orbital calculation by Mingos19

on Co6 (CO) 14 4-. However, because of the large number of external orbitals

involved in this and other metal clusters, even the A lg and Eg molecular orbitals

do not represent pure core bonding. Thus the Co 6 (CO) 144- system has three

molecular orbitals of A lg symmetry and four molecular orbitals of Eg symmetry

thereby precluding an analysis of the type given above for the Hoffmann-Lipscomb

B6 H6 2- computation.

4. THE ICOSAHEDRON

Consider an icosahedrally weighted K12 complete graph having 30 edges of

unit weight corresponding to the icosahedron edges, 30 edges of weight m

corresponding to the rmeta interaction of non-adjacent non-antipodal vertex pairs,

and 6 edges of weight p corresponding to the pa. Interaction of the 6 icosahedron

antipodal pairs. The spectrum of this graph can be determined by symmetry

factoring using first a three-fold axis and then a two-fold axis (Figure 1, bottom).

The fully symmetric branch (AG) gives the eigenvalue 5+Sm+p -corresponding

to the Ag molecular orbital as well as one of the -1-m+p eigenvalues of the

quintuply degenerate Hg molecular orbitals. The remaining four -1-m+p

elgenvalues of the quintuply degenerate Hg molecular orbitals arise from the

two Isolated vertices of the doubly degenerate EG branch. The AU branch and

the doubly degenerate EU branch generate a quadratic equation whose roots
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give the eigenvalues of the triply degenerate Tlu and T2u molecular orbitals.

Note that the Tlu molecular orbital has a positive eigenvalue unless p >V'S (1-m).

Thus with most likely values of the edge weights m and p the icosahedrally

weighted K12 graph (Figure 1) has four positive eigenvalues (the Ag and triply

degenerate Tlu orbitals) rather than only the single positive eigenvalue

characteristic of the unweighted K12 graph. Note also that setting m=O and p=O

gives the spectrum of the icosahedron (+5, +15, +15, + I/S, -1, -1, -I, -1, -1, -/5,

-A'S, -/5) whereas setting m-1 and p=1 gives the spectrum of the K12 complete
~graph (+11, -1, -1, -1, -1, -1, -1, -1, -I, -1, -1, -I).

The icosahedron like the octahedron has two pure core bonding molecular

orbitals, namely Ag and T2u. The computed values for their energies substituted

in equation 6 generate two equations in the three parameters m, p, and S. The

system is therefore underdetermined and an additional relationship between

m, p. and a must be used in order to obtain unique values for the three parameters.

Instead of assuming such a relationship, consider the minimum value of p to be

zero and the maximum value of p to be m. Then plot against p in this range

the corresponding values of the parameters m and 1 (Figure 2) and the molecular

orbital energy levels adjusted by removal of the core-surface interaction (Figure

3) using the data from the Hoffmann-Lipscomb 3N extended HUckel computations

on B1 2 H 12
2 - . The values of 0 and the core molecular orbital energies are seen

from Figures 2 and 3 to be rather insensitive to the actual value of p taken.

By far the most important conclusion from these data Is that for all likely

values of p the core bonding In . icosahedral B1 2 H1 2
2- leads to four positive

elgenvalues (AIg + TIu) rather than the single positive eigenvalue obtained by

using the K 12 complete graph for the core bonding topology. The graph theory

derived model 2 Is thus incorrect for the icosahedron since it leads to the wrong

number of positive eigenvalues for the core bonding, namely one rather than
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four. Nevertheless, the graph theory derived model works for icosahedral boranes

and carboranes because this fundamental error is corrected by mixing the bonding

Tiu core orbitals with the bonding Tju surface orbitals. Thus the mixing energy

AE(TIu) is so large (1.1 to 1.6 on the scale of Table 2) that the core Tju orbitals

are raised to antibonding energies by the core-surface Interaction so that only

one core bonding orbital, namely the Ag, orbital, remains after this Interaction.

rhis is why the graph theory derived model for icosahedral B1 2 H12 2- leads to

the experimentally observed skeletal electron count even though the assumption

of the K1 2 complete graph for the core bonding topology leads to the incorrect

number of core bonding orbitals (before core-surface mixing).

Important experimental support for these ideas is found in the centered

icosahedral gold cluster Au1 3 CI 2 (PMe 2 Ph)1 0
3 + (ref. 22) In which there is no

surface bonding comparable to that of B12 H1 22- because the p orbitals of the

12 peripheral gold atoms In this cluster have energies too high to function as

twin internal orbitals for surface bonding.6, 7 Turning off the surface bonding

in this way in the centered icosahedral Au 1 3CI 2(PMe 2 Ph) 10
3 + leads to four core

bonding orbitals in accord with the energy levels of the icosahedrally distorted

K12 graph for any reasonable levels of the parameters m and p (Figure 1 bottom

and Figure 3). This point may also relate to the general observation6 that the

overlap topology of the rr-1 peripheral gold atoms in a centered Aun cluster leads

to electron counts corresponding not to those expected for a Kn- 1 complete

graph but instead to that of the polyhedron formed by the peripheral gold atoms.

S. SUMMARY

Determination of the elgenvalues of the octahedrally weighted K6 complete

graph Indicates one positive eigenvalue for any positive weighting (t) of the
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antipodal (trans) interactions relative to unit adjacent lCis interactions. This

indicates that the unweighted K6 graph used in the graph theory derived model

for the octahedral boranes, carboranes, and metal clusters2 is adequate for

determining the correct number of core bonding orbitals and therefore the

corresponding electron counts. The Hoffmann-Lipscomb calculations13 on B6 H6
2-

correspond to a value of 0.625 for this parameter t.

A similar determination of the eigenvalues of the icosahedrally weighted

K 1 2 complete graph indicates four positive eigenvalues for any likely values

for the weighting parameters m and p. This Is In disagreement with the graph

theory derived model 2 for icosahedral boranes and carboranes which uses the

unweighted K12 graph for the core bonding leading to only a single positive

eigenvalue corresponding to a single core bonding orbital. However, core-surface

bonding interactions raise the energies of three of the four core bonding orbitals

to antibonding levels so that despite this major inaccuracy the graph theory derived

model fortuitiously gives correct electron counts for icosahedral boranes.

The analysis in this paper shows that the graph theory derived model 2 describes

a bonding topology which is accurate enough to lead to correct electron counts

in octahedral clusters but leads to difficulties in icosahedral clusters. However,

most globally delocalized metal clusters fortunately are octahedra to which

this simple bonding approach can be reliably applied. it thus appears that the

graph theory derived models will continue to be useful in understanding the

relationship between shape and electron count In the large variety of known

polyhedral boranes, carboranes, and metal clusters.
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TABLE 1

MOLECULAR ORBITAL ENERGY PARAMETERS

FOR OCTAHEDRAL B6H6 
2

Calculated Adjusted by
Molecular by Hoffmann RemovalI of C ore-
Orit adLiscma(N Surface Interaction

A1,g 2.969 2.969

Tiu -0.829 -0.401

Eg9 -0.884 -0.884

Surface Bonding

Tlu 1.023 0.595

T2g 0.493 0.493

T2u -0.416 -0.416

Tig -0.671 -0.671

Other Parameters

80.642 0.642

t 0.625 0.625

a E(TiuJ 0.428 0

a) From R. Hoffmann and W.N. Lipscomb, J. Chem. PhyS.. I
2179 (1962).
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Figure 1: Symmetry factoring schemes for the octahedrally weighted K6 graph

(top) and the Isocahedrally weighted K12 graph (bottom). The

designations of the branches correspond to that used in R.B. King,

Thew. Chim. Acta, 4.A 223 (1977). The symmetry factoring of the

octahedrally weighted K6 graph uses a three-fold axis (C3) leading

to an A branch and a doubly degenerate E branch. The symmetry

factoring of the icosahedrally weighted K 12 graph first uses a three-fold

axis (C3) similarly leading to A and doubly degenerate E branches,

which in turn use two-fold axes (C2) for further symmetry factoring

into symmetric (G) and antisymmetric (U) branches; the resulting four

branches are designated as AG, AU, EG, and EU.

Figure 2: Plot of the parameters m and B versus p for the Hoffmann-Lipscomb

3N extended HUckel computations on B12H122-.

Figure 3: Plot of the energies of the core molecular orbitals Ag + Tlu + T2u + Hg

versus p in the absence of core-surface Interactions for the Tju and

Hg orbitals for the Hoffmann-LiFscomb 3N extended Huckel computations

on B1 2 H1 2
2-.
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